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ABSTRACT

In recent years several authors have made significant contributions in the development of the work due to Exton.
In the present paper double integral representations of Eulerian kind for the triple hypergeometric function Xq
have been established which involve Gauss hypergeometric function ,F;, generalized, kampé dé Feriet
function, Lauricella function and Exton’s function Xgq itself in their kernels.
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I. INTRODUCTION

In 1982 Exton [2] has introduced Laplace
integral representations for each triple
hypergeometric series X; to X,,. After then several
authors [1, 4, 5, 6] made their contribution in the
extension and development of theory of double
integral and Exton’s work. In this paper some new
double integral representations of Eulerian kind for
the Exton’s function Xq have been established which
involve Gauss hypergeometric function, generalized,
kampé dé Fériét  function, Exton function and
Appell function in their integrals.
Exton [2] defined the following series representation
and Laplace integral representation for the Exton
function Xg.
X9(a,b;c;x,y,2)
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Srivastava and Karlsson [3] have given the precise
three dimensional region of convergence of (1.1):

1 1 1 1
r<Z<t<—/\s<—+§\/(1—4r)(1—4t),

4 2
x| <7yl <sz| <t (1.2)
Where positive quantities r, s, t are associated radii of

convergence.
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Re(a) > 0,Re(b) >0

Il. RESULTS REQUIRED
The well known integral formulas [7] have
been used in the present investigations.
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Re(a) > 0, Re(B) > 0 and the constants A and u are

such that none of the expression 1+c,1+4d,[1+

ct+d(1 +t)], where 0 <t < 1, are zero.
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Where u=>0,v=0 and u+v<1Re(an)>

0,Re(B) > 0 and Re(y) > 0.
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a<c<b,Re(a)>0,Re(B)>0
B(al. B) =

f t1(1 —t)P~1 dt, (Re (o) > 0,Re(B) > 0)
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Binomial theorem
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(m—n)! = = 0<n<m (2.6)
Lemma
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111, MAIN RESULTS
X9(a,b; ¢ x,y,2)

_T'a+b+o0) a o
~T@I O ﬂ RA il i

at+b+ca+b+c+1
2 ’ 2

X ,F ; ¢ 4(u?x + uvy

+ vzz)> dudv (3.1)

u=>0,v=0u+v<1Re(a) > 0Reb)

> 0,Re(c) >0
here ,F; denotes the well
hypergeometric function defined by

(@) (b): z

.Fi1(a,b;c;z) = 0 ©. ™

=

The above series is convergent for all values

of z provided |z| < 1 and divergent if |z| > 1. When
z = 1, the series is convergent if Re(c—a—b) >0
and divergent if Re(c —a—b) < 0. When z = —1,
the series is absolutely convergent when Re(c —a —
b>0 and is convergent but not absolutely when
—1<Re(c—a—b)<0 and divergent when
Re(c—a—b) < —1.

known Gauss
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Here a<y<p; /1<v<u;Re(a)>0,Re((b)>)
0; Re(cy) > 0,Re(cy;) >0
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Here F(Z) 0: ‘1 denotes generalized kampé dé Fériét
function (3, p.27, results 28, 29, sec. 1.3)
Xq(a,b; c;x,y,2)
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Re(a) > Re(a) > 0; Re(B) > Re(b) >0 and the
constant A, pand A,y are such that none of the
expression 1+A14+pl+ru+p(l—u) and
1+M,1+p,1+Av+p'(1—v), where 0Su<1
and 0 < v < 1 respectively, are zero.
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00
X Xo(\, u; ¢; xu?, yuv, zv?)dudv (34)
Re(A) > Re(a) > 0; Re(u) > Re(b) >0
Where X, denotes Exton function (1.1) and its
condition of convergence is given in (1.2).
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Xo(a,b;c;x,y,2) =

Xo(a,b;cy +¢35%x,y,2) =

5 ,f,cl,c2;4xu2<§,4(1 )
X [yu(1 — u) +z(1 - w)?] ) dudg (3.5)
Re(c;) > 0,Re(cy) > 0,Re(a) > 0,Re(b) >0

Where F, denote Appell function [3, pp 22, ch.1,
result(5)].

IV. PROOF OF THE RESULTS
In order to prove the result (3.1), begin with
right hand side by expressing the series definition of
Gauss hypergeometric function, we have
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m

> > )m 22m (xu? + yuv + zv2)™

(Om m!

dudv (4.1)
On using (2.5), (2.6) and (2.7) in the series on the
right hand side of (4.1), we pbtain

2F1
w w(a+b+c) (a+b+c+1)
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Again by using (2.5), (2.6) and (2.7) in (4.2) we get
2F1
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By making use of (4.3) in (4.1) and changing the
order of integration and summation, we have
© o 22m+2n+2p (a +b+c

2 )m+n+p ’

TP
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(a +b + c+1

) xmy"zP
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X [ff ua+2m+n—1Vb+n+2p—1(1 —u- V)c—l dudv

(4.4)
Which upon applying the results (2.2), (2.8) and (2.9)
yields the results (3.1)
The other desired results (3.2) to (3.5) can be proved
by the similar method.

X

V. CONCLUSION
In this paper some double integral
representations have been established for Exton
function Xg. A numerous integrals can be obtained
for the Extons as well as other hypergepmetric
functions. Not only this many new results can be
derived which are applicable for Exton’s functions.
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